On the Three-Dimensional Orthogonal Drawing of Series-Parallel Graphs (Extended Abstract)

Satoshi Tayu, Kumiko Nomura, and Shuichi Ueno
Department of Communications and Integrated Systems, Tokyo Institute of Technology, Tokyo 152-8550-S3-57, Japan

Abstract—It has been known that every 6-graph has a 3-bend 3-D orthogonal drawing, while it has been open whether every 6-graph has a 2-bend 3-D orthogonal drawing. For the interesting open question, it is known that every 5-graph has a 2-bend 3-D orthogonal drawing, and every outerplanar 6-graph without triangles has a 0-bend 3-D orthogonal drawing. We show in this paper that every series-parallel 6-graph has a 2-bend 3-D orthogonal drawing.

I. INTRODUCTION

We consider the problem of generating orthogonal drawings of graphs in the space. The problem has obvious applications in the design of 3-D VLSI circuits and optoelectronic integrated systems [7], [11]. Throughout this paper, we consider simple connected graphs G with vertex set $V(G)$ and edge set $E(G)$. We denote by $d_G(v)$ the degree of a vertex v in G, and by $\Delta(G)$ the maximum degree of a vertex of G. G is called a k-graph if $\Delta(G) \leq k$. It is well-known that every graph can be drawn in the space so that its edges intersect only at their ends. Such a drawing of a graph G is called a 3-D drawing of G. A 3-D orthogonal drawing of G is a 3-D drawing such that each edge is drawn by a sequence of contiguous axis-parallel line segments. Notice that a graph G has a 3-D orthogonal drawing only if $\Delta(G) \leq 6$. A 3-D orthogonal drawing with no more than b bends per edge is called a b-bend 3-D orthogonal drawing.

Eades, Symvonis, and Whitesides [4], and Papakostas and Tollis [10] showed that every 6-graph has a 3-bend 3-D orthogonal drawing. Eades, Symvonis, and Whitesides [4] also posed an interesting open question of whether every 6-graph has a 2-bend 3-D orthogonal drawing. Wood [14] showed that every 5-graph has a 2-bend 3-D orthogonal drawing. Nomura, Tayu, and Ueno [9] showed that every outerplanar 6-graph has a 0-bend 3-D orthogonal drawing if and only if it contains no triangle as a subgraph, while Eades, Stirk, and Whitesides [3] proved that it is \mathcal{NP}-complete to decide if a given 5-graph has a 0-bend 3-D orthogonal drawing. We show in this paper the following theorem.

Theorem 1: Every series-parallel 6-graph has a 2-bend 3-D orthogonal drawing.

The proof of Theorem 1 is constructive and provides a polynomial time algorithm to generate such a drawing for a series-parallel 6-graph.

It is still open whether every 6-graph has a 2-bend 3-D orthogonal drawing. It is also open whether every series-parallel 6-graph has a 1-bend 3-D orthogonal drawing.

II. SERIES-PARALLEL GRAPHS

A series-parallel graph is defined recursively as follows.

1. A graph consisting of two vertices joined by a single edge is a series-parallel graph. The vertices are the terminals.
2. If G_1 is a series-parallel graph with terminals s_1 and t_1, and G_2 is a series-parallel graph with terminals s_2 and t_2, then a graph G obtained by either of the following operations is also a series-parallel graph:
 (i) Series-composition: identify t_1 with s_2. Vertices s_1 and t_2 are the terminals of G.
 (ii) Parallel-composition: identify s_1 and s_2 into a vertex s, and t_1 and t_2 into t. Vertices s and t are the terminals of G.

III. 3-D EMBEDDINGS AND ORTHOGONAL DRAWINGS

The three-dimensional (3-D) grid G is an (infinite) graph consisting of \mathbb{Z}^3, the set of grid-points in 3-D space with integer coordinates, together with the axis-parallel edges connecting neighboring grid-points. The grid-points are also considered as vectors. The 3-D embedding $\langle \phi, \rho \rangle$ of a graph G is defined by a one-to-one mapping $\phi : V(G) \rightarrow V(\mathbb{Z}^3)$, together with a mapping ρ that maps each edge $(u, v) \in E(G)$ onto a path $\rho(u, v)$ in G that connects $\phi(u)$ and $\phi(v)$. A path P in G is called a k-bend path if P contains k bends.

Let $D^+ = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$, $D^- = \{(-1, 0, 0), (0, -1, 0), (0, 0, -1)\}$, and $D = D^+ \cup D^-$. A vector in D is called a direction.

Let (ϕ, ρ) be a 3-D embedding of a graph G, and $(u, v) \in E(G)$. If g is a grid-point adjacent with $\phi(u)$ in path $\rho(u, v)$ in G, there exists a direction $d \in D$ such that $g = \phi(u) + d$. For the two-dimensional case, Biedl and Kant [2], and Liu, Morgana, and Simeone [8] showed that every planar 4-graph has a 2-bend 2-D orthogonal drawing with only exception of the octahedron. Moreover, Kant [6] showed that every planar 3-graph has a 1-bend 2-D orthogonal drawing with the only exception of K_4. Tayu, Nomura, and Ueno [12] showed that every series-parallel 4-graph has a 1-bend 2-D orthogonal drawing. Nomura, Tayu, and Ueno [9] showed that every outerplanar 3-graph has a 0-bend 2-D orthogonal drawing if and only if it contains no triangle as a subgraph. On the other hand, Garg and Tamassia [5] proved that it is \mathcal{NP}-complete to decide if a given planar 4-graph has a 0-bend 2-D orthogonal drawing. Battista, Liotta, and Vargiu [1] showed that the problem can be solved in polynomial time for planar 3-graphs and series-parallel graphs.

978-1-4244-1684-4/08/$25.00 ©2008 IEEE 212
We denote such d by $\alpha^u_d(e)$. It is easy to see the following lemma.

Lemma 1: If $\rho(u, v)$ is a 2-bend path, $\rho(u, v)$ is uniquely determined by $\phi(u), \phi(v), \alpha^u_d(e),$ and $\alpha^v_d(e).$

Figure 1 shows a 2-bend path $\rho(u, v)$ determined by $\phi(u) = (0, 0, 0), \phi(v) = (3, 2, 1), \alpha^u_d(e) = (0, 0, 1),$ and $\alpha^v_d(e) = (-1, 0, 0).

![Fig. 1. Example of a 2-bend path $\rho(u, v)$.](Image)

Two grid-points g and $g + (a, b, c)$ are said to be in the general position if $abc \neq 0$. Let $g_0, g_1 = g_0 + (x_1, y_1, z_1),$ and $g_2 = g_0 + (x_2, y_2, z_2)$ be grid-points in the general position. Then, we define $g_i \leq g_0$ if $|w_1| < |w_2|$ or $|w_1|w_2 < 0$ for any $w \in \{x, y, z\}$. A 3-D embedding is called a τ-embedding if all of the following conditions are satisfied:

Condition A: If $u \neq v$ then $\phi(u)$ and $\phi(v)$ are in the general position.

Condition B: For any distinct edges $e, e' \in E(G)$ incident to a vertex u, $\alpha^u_d(e) \neq \alpha^u_d(e')$.

Condition C: $\rho(e)$ is a 2-bend path for any $e \in E(G)$.

Condition D: For any edges $e_1 = (u, v_1)$ and $e_2 = (u, v_2)$ incident to a vertex u, $(D-1)$ or $(D-2)$ below holds;

- $(D-1)$ $\alpha^u_d(e_1) = \pm \alpha^u_d(e_2)$;
- $(D-2)$ $\phi(v_1) \leq_{\phi(u)} \phi(v_2)$ or $\phi(v_2) \leq_{\phi(u)} \phi(v_1)$.

It follows from Condition B that G has a τ-embedding only if G is a 6-graph. The purpose of this section is to show the following theorem.

Theorem 2: A τ-embedding of a 6-graph G induces a 2-bend 3-D orthogonal drawing of G.

Proof (Sketch): The theorem is proved by Lemma 1 together with the following two lemmas.

Lemma 2: Let (ϕ, ρ) be a 3-D embedding of G satisfying Conditions A through C. If edges e_1 and e_2 have no common paths, $\rho(e_1)$ and $\rho(e_2)$ are disjoint.

Proof: Omitted in the extended abstract.

Lemma 3: Let (ϕ, ρ) be a 3-D embedding of G satisfying Conditions A through C. If any adjacent edges $e_1 = (u, v_1)$ and $e_2 = (u, v_2)$ satisfy Condition D, $\rho(e_1)$ and $\rho(e_2)$ are internally disjoint.

Proof: Omitted in the extended abstract.

IV. PROOF OF THEOREM 1 (SKETCH)

Let G be a series-parallel 6-graph with terminals s and t. Before proving the theorem, we need some preliminaries.

IV-A. 9-CUBIC 3-D EMBEDDINGS

Let $p = (p_x, p_y, p_z)$ and $q = (q_x, q_y, q_z)$ be grid-points in the general position, and let $g_{\min}(p, q) = \min\{p_w, q_w\}$ and $g_{\max}(p, q) = \max\{p_w, q_w\}$ for each $w \in \{x, y, z\}$. A 3-D sub-grid $Q_{p, q}$ induced by a set of grid points $\{(i_x, i_y, i_z)\}_{i_x, i_y, i_z} \leq i_x \leq g_{\max}(p, q), g_{\min}(p, q) \leq i_y \leq g_{\max}(p, q), g_{\min}(p, q) \leq i_z \leq g_{\max}(p, q)\}$ is called a center-cube for p and q. Let $q = p + (a, b, c)$. For each $\sigma \subseteq \{x, y, z\}$, define grid points g_{σ} as follows:

- For each σ, g_{σ} corresponds to a corner of $Q_{p, q}$.

Fig. 2. Cubes for p and q.

![Fig. 2. Cubes for p and q.](Image)

For each $\sigma \subseteq \{x, y, z\}$, $Q_{p, q}^\sigma$ is a 3-D subgrid induced by a vertex set $\{(i_x, i_y, i_z) | i_x \in X_{\sigma}, i_y \in Y_{\sigma}, i_z \in Z_{\sigma}\}$. A 3-D grid $Q_{p, q}^\sigma$ is called a corner-cube for p and q. We define that $V_{p, q} = V(Q_{p, q}) \cup \bigcup_{\sigma \subseteq \{x, y, z\}} V(Q_{p, q}^\sigma)$. Figure 2 illustrates an example of $Q_{p, q}$ and corner cubes $Q_{p, q}^\sigma$.
IV-B. FEASIBLE PAIR

For two vectors \(a = (a_x, a_y, a_z) \) and \(b = (b_x, b_y, b_z) \), we define that \(a \cdot b = (a_x b_x + a_y b_y + a_z b_z) \). We denote by \(a \cdot b \) the inner product of \(a \) and \(b \). A vector \(r \in \{-1, 1\}^3 \) is called a diagonal direction. For a diagonal direction \(r \), let \(D_r^+ = \{(1,0,0) + r, (0,1,0) + r, (0,0,1) + r\} \) and \(D_r^- = \mathcal{D} - D_r^+ \). It should be noted that \(d \cdot r \in D_r^+ \) if and only if \(d \in D_r^+ \) and \(d \cdot r = 1 \). Also, \(d \cdot r \in D_r^- \) if and only if \(d \in D_r^- \) and \(d \cdot r = -1 \).

For any \(D_1, D_2 \subseteq \mathcal{D} \), if \(D_1 \) is said to be non-admissible if \(D_1 = \{ d \} \) and \(D_2 = \{-d\} \) for some \(d \in \mathcal{D} \). Otherwise, \(\langle D_1, D_2 \rangle \) is said to be admissible.

For \(D_1, D_2 \subseteq \mathcal{D} \) and a diagonal direction \(r \), \(\langle D_1, D_2 \rangle \) is said to be inner-directed for \(r \) if there exist directions \(d_s \in D_s \cap D_r^+ \) and \(d_t \in D_t \cap D_r^- \) such that \(d_s \cdot d_t = 0 \), and \(\{ D_s - \{ d_s \}, D_t - \{ d_t \} \} \) is admissible.

For a series-parallel 6-graph with terminals \(s \) and \(t \), a diagonal direction \(r \), and \(D_s, D_t \subseteq \mathcal{D} \), \(\langle D_s, D_t \rangle \) is said to be feasible for \(G \) and \(r \) if all of the following conditions are satisfied:

1. \(|D_s| = d_G(s) \).
2. \(|D_t| = d_G(t) \).
3. \((D_s, D_t) \) is inner-directed for \(r \) if \((s, t) \in E(G) \), and \((D_s, D_t) \) is admissible if \((s, t) \notin E(G) \).

It should be noted that if \(\langle D_s, D_t \rangle \) is feasible for some \(G \) and \(r \in \{-1, 1\}^3 \), then \(\langle D_s, D_t \rangle \) is also admissible.

It is easy to see the following.

Lemma 4: For any series-parallel 6-graph \(G \) and any diagonal direction \(r \in \{-1, 1\}^3 \), there exist \(D_s, D_t \subseteq \mathcal{D} \) such that \(\langle D_s, D_t \rangle \) is feasible for \(G \) and \(r \).

IV-C. PROOF

For any grid-points \(p \) and \(q = p + (a, b, c) \) in the general position, a diagonal direction \(\langle a/|a|, b/|b|, c/|c| \rangle \) is denoted by \(R_{p,q} \). Now, we are ready to prove the following.

Theorem 3: For a series-parallel 6-graph \(G \) with terminals \(s \) and \(t \), a diagonal direction \(r \), and \(D_s, D_t \subseteq \mathcal{D} \) such that \(\langle D_s, D_t \rangle \) is feasible for \(G \) and \(r \), there exists a 9-cubic \(\tau \)-embedding \(\langle \phi, \rho \rangle \) of \(G \) such that \(\{ \alpha_\phi(e) \}_{e \in E(G)} = D_s \), \(\{ \alpha_\rho(e) \}_{e \in E(G)} = D_t \), and \(\mathcal{R}_{\phi(s), \phi(t)} = r \).

The proof of Theorem 3 is shown in the next section. Theorem 1 follows from Theorems 2 and 3, and Lemma 4.

V. PROOF OF THEOREM 3 (SKETCH)

The theorem is proved by induction on \(|E(G)| \).

If \(|E(G)| = 1 \), \(G \) is a graph consisting of only one edge \((s,t)\) and so \(|D_s| = |D_t| = 1 \). Since \((s,t) \in E(G)\) and \(\langle D_s, D_t \rangle \) is feasible for \(G \) and a diagonal direction \(r \), \(\langle D_s, D_t \rangle \) is said to be inner-directed for \(r \). Without loss of generality we assume that \(r = (1,1,1) \), \(d_s = (1,0,0) \), and \(d_t = (0,-1,0) \). Define a 3-D embedding \(\langle \phi, \rho \rangle \) of \(G \) as follows: \(\phi(s) = (0,0,0) \), \(\phi(t) = (1,1,1) \), and \(\rho(s,t) \) is a path connecting \(\phi(s) \) and \(\phi(t) \), and passing through \((1,0,0)\) and \((1,0,1)\) as shown in Fig. 3. It is easy to see that \(\langle \phi, \rho \rangle \) is a 9-cubic \(\tau \)-embedding of \(G \).

V.A. CASE 1: PARALLEL-COMPOSITION

We consider the case when \(G \) is a parallel-composition of series-parallel graphs \(G_1 \) and \(G_2 \). We denote the terminals of \(G_1 \) and \(G_2 \) by \(s \) and \(t \). We further distinguish two cases.

Case 1-1 \((s,t) \in E(G)\).

Without loss of generality, we assume that \(G_1 \) consists of exactly one edge \((s,t) \) and \(G_2 \) is the graph obtained from \(G \) by deleting the edge \((s,t) \). Then, \(\langle D_s, D_t \rangle \) is inner-directed for \(r \) since \(\langle D_s, D_t \rangle \) is feasible for \(G \) and \(r \).

Lemma 5: There exist \(d_s \in D_s \) and \(d_t \in D_t \) such that \(\{ \langle d_s \rangle, \langle d_t \rangle \} \) is feasible for \(G_1 \) and \(r \), and \(\langle D_s - \{ d_s \}, D_t - \{ d_t \} \rangle \) is feasible for \(G_2 \) and \(r \).

Thus, by the induction hypothesis, \(G_1 \) has a 9-cubic \(\tau \)-embedding \(\langle \phi_1, \rho_1 \rangle \) for \(r \). Also, \(G_2 \) has a 9-cubic \(\tau \)-embedding \(\langle \phi_2, \rho_2 \rangle \) for \(r \).

We can prove that we can construct a 9-cubic \(\tau \)-embedding \(\langle \phi, \rho \rangle \) of \(G \) for \(\langle D_s, D_t \rangle \) and \(r \) from \(\langle \phi_1, \rho_1 \rangle \) and \(\langle \phi_2, \rho_2 \rangle \).

Case 1-2 \((s,t) \notin E(G)\).

We can prove the following.

Lemma 6: \(D_v \) can be partitioned into \(D_v^{(1)} \) and \(D_v^{(2)} \) for \(v \in \{ s, t \} \) such that \(\langle D_v^{(1)}, D_v^{(1)} \rangle \) is feasible for \(G_1 \) and \(r \), and \(\langle D_v^{(2)}, D_v^{(2)} \rangle \) is feasible for \(G_2 \) and \(r \).

Thus, by the induction hypothesis, \(G_i (i = 1, 2) \) has a 9-cubic \(\tau \)-embedding \(\langle \phi_i, \rho_i \rangle \) for \((D_v^{(1)}, D_v^{(2)}) \) and \(r \).

We can prove that we can construct a 9-cubic \(\tau \)-embedding \(\langle \phi, \rho \rangle \) of \(G \) for \(\langle D_s, D_t \rangle \) and \(r \) from \(\langle \phi_1, \rho_1 \rangle \) and \(\langle \phi_2, \rho_2 \rangle \).

V.B. CASE 2: SERIES-COMPOSITION

We consider the case when \(G \) is a series-composition of series-parallel graphs \(G_1 \) and \(G_2 \). Without loss of generality, we denote the terminals of \(G_1 \) by \(s \) and \(u \), and those of \(G_2 \) by \(u \) and \(t \).

Since \(\langle D_s, D_t \rangle \) is admissible, there exist \(d_s \in D_s \) and \(d_t \in D_t \) satisfying \(d_s \neq -d_t \). We further distinguish three cases.

Case 2-1 \(d_s \in D_r^+ \) and \(d_t \in D_r^- \).

We can prove the following.

Lemma 7: There exist disjoint sets \(D_u^{(s)} \) and \(D_u^{(t)} \) of directions such that \(\langle D_s, D_u^{(s)} \rangle \) is feasible for \(G_1 \) and \(r \), and \(\langle D_t, D_u^{(t)} \rangle \) is feasible for \(G_2 \) and \(r \).
Thus, by the induction hypothesis, G_1 has a 9-cubic τ-embedding $\langle \phi^{(1)}, \rho^{(1)} \rangle$ for $\langle D_s, D_u^{(s)} \rangle$ and r, and G_2 has a 9-cubic τ-embedding $\langle \phi^{(2)}, \rho^{(2)} \rangle$ for $\langle D_s^{(2)}, D_2 \rangle$ and r.

We can prove that we can construct a 9-cubic τ-embedding $\langle \phi, \rho \rangle$ of G for $\langle D_s, D_t \rangle$ and r from $\langle \phi^{(1)}, \rho^{(1)} \rangle$ and $\langle \phi^{(2)}, \rho^{(2)} \rangle$.

Case 2-2 $d_s \in D^+_r$ and $d_t \in D^+_r$ or $d_s \in D^-_r$ and $d_t \in D^-_r$.

It should be noted that $d_s \cdot r = d_t \cdot r$. Let $r_s = r$ if $d_s \cdot r = 1$ and $r_s = -r$ otherwise, and let $r_u = -r_s$. We can prove the following.

Lemma 8: There exist disjoint sets $D_s^{(s)}$ and $D_u^{(s)}$ of directions such that $\langle D_s, D_s^{(s)} \rangle$ is feasible for G_1 and r_s and $\langle D_u^{(s)}, D_t \rangle$ is feasible for G_2 and r_u.

Thus, by the induction hypothesis, G_1 has a 9-cubic τ-embedding $\langle \phi^{(1)}, \rho^{(1)} \rangle$ for $\langle D_s, D_s^{(s)} \rangle$ and r_s, and G_2 has a 9-cubic τ-embedding $\langle \phi^{(2)}, \rho^{(2)} \rangle$ for $\langle D_t, D_t \rangle$ and r_u.

We can prove that we can construct a 9-cubic τ-embedding $\langle \phi, \rho \rangle$ of G for $\langle D_s, D_t \rangle$ and r from $\langle \phi^{(1)}, \rho^{(1)} \rangle$ and $\langle \phi^{(2)}, \rho^{(2)} \rangle$.

Case 2-3 $d_s \in D^-_r$ and $d_t \in D^+_r$.

Let $r_s = r + 2d_s$ and $r_u = -r_s$. It should be noted that $r_s \in \{-1,1\}^2$, since $d_s \cdot r = -1$. We can prove the following.

Lemma 9: There exist disjoint sets $D_s^{(s)}$ and $D_u^{(s)}$ of directions such that $\langle D_s, D_s^{(s)} \rangle$ is feasible for G_1 and r_s and $\langle D_u^{(s)}, D_t \rangle$ is feasible for G_2 and r_u.

Thus, by the induction hypothesis, G_1 has a 9-cubic τ-embedding $\langle \phi^{(1)}, \rho^{(1)} \rangle$ for $\langle D_s, D_s^{(s)} \rangle$ and r_s, and G_2 has a 9-cubic τ-embedding $\langle \phi^{(2)}, \rho^{(2)} \rangle$ for $\langle D_t^{(2)}, D_t \rangle$ and r_u.

We can prove that we can construct a 9-cubic τ-embedding $\langle \phi, \rho \rangle$ of G for $\langle D_s, D_t \rangle$ and r from $\langle \phi^{(1)}, \rho^{(1)} \rangle$ and $\langle \phi^{(2)}, \rho^{(2)} \rangle$.

This completes the proof of Theorem 3.

VI. EXAMPLES

A series-parallel 6-graph G shown in Fig. 4(a) is a parallel-composition of series-parallel 6-graphs G_1 and G_2 shown in Fig. 4(b) and (c), respectively. Given $D_s = \{\{-1,0,0\},\{0,0,-1\}\}, D_t = \{\{-1,0,0\},\{0,-1,0\}\}$, and a diagonal direction $r = (-1,1,1)$, there exist $d_s = (-1,0,0)$ and $d_t = (0,-1,0)$ such that $\langle \{d_s\}, \{d_t\}\rangle$ is feasible for G_1 and r, and $\langle \{0,0,-1\},\{-1,0,0\}\rangle$ is feasible for G_2 and r by Lemma 5.

A 9-cubic τ-embedding $\langle \phi^{(1)}, \rho^{(1)} \rangle$ of G_1 for $\langle \{d_s\}, \{d_t\}\rangle$ and r is shown in Fig. 4(e), and a 9-cubic τ-embedding $\langle \phi^{(2)}, \rho^{(2)} \rangle$ of G_2 for $\langle \{0,0,-1\},\{-1,0,0\}\rangle$ and r is shown in Fig. 4(f). We obtain a 9-cubic τ-embedding $\langle \phi, \rho \rangle$ of G for $\langle D_s, D_t \rangle$ and r from $\langle \phi^{(1)}, \rho^{(1)} \rangle$ and $\langle \phi^{(2)}, \rho^{(2)} \rangle$ as shown in Fig. 4(g). The 9-cubic τ-embedding $\langle \phi, \rho \rangle$ of G induces a 2-bend 3-D orthogonal drawing of G by Theorem 2.

REFERENCES

