Orthogonal Ray Graphs and Nano-PLA Design

Anish Man Singh Shrestha, Satoshi Tayu, and Shuichi Ueno
Department of Communications and Integrated Systems
Tokyo Institute of Technology, Tokyo 152-8550-S3-57, Japan

Abstract—The logic mapping problem and the problem of finding a largest square sub-crossbar with no defects in a nano-crossbar with nonprogrammable crosspoint defects and disconnected wire defects have been known to be NP-hard. This paper shows that for nano-crossbars with only disconnected wire defects, the former remains NP-hard, while the latter can be solved in polynomial time.

I. INTRODUCTION

The problem of mapping a logic function onto a defective nano-crossbar with nonprogrammable crosspoint defects and disconnected wire defects was first considered by Rao, OraIologlu, and Karri [4]. They proposed several heuristics since the problem is NP-hard. The problem of finding a maximum defect-free square sub-crossbar in a nano-crossbar with nonprogrammable crosspoint defects and disconnected wire defects was first investigated by Tahoori [6]. Since the problem is also NP-hard, several heuristics have been proposed [1], [6]. This paper considers the complexity of the problems for nano-crossbars with only disconnected wire defects.

I-A. LOGIC MAPPING

Let f be a logic function in a sum-of-product form. The problem of implementing f in a surviving sub-crossbar S of a nano-crossbar with disconnected wire defects is formulated as LOGIC MAPPING, which is the problem of assigning the literals and product terms of f to surviving nano-wires of S so that containment relationships among the literals and product terms can be represented by crosspoint connections in S. A graph model of LOGIC MAPPING can be obtained as follows.

Let L_f be the set of literals of f, and P_f be the set of product terms of f. A logic function graph G_f for f is a bipartite graph defined as follows: $V(G_f) = L_f \cup P_f$, and (L_f, P_f) is a bipartition of G_f; vertices $l \in L_f$ and $p \in P_f$ are connected by an edge if and only if literal l is contained in product term p.

Let W_h be the set of surviving horizontal nano-wires, and W_v be the set of surviving vertical nano-wires of S. A surviving sub-crossbar graph G_S for S is a bipartite graph defined as follows: $V(G_S) = W_h \cup W_v$ and (W_h, W_v) is a bipartition of G_S; vertices $x \in W_h$ and $y \in W_v$ are connected by an edge if and only if nano-wires x and y have a crosspoint. Then, LOGIC MAPPING can be modeled as the subgraph isomorphism problem, which is to find a subgraph of G_S isomorphic to G_f. An example of a logic function f, a defective crossbar S, and their corresponding bipartite graphs G_f and G_S is shown in Figure 1.

I-B. SQUARE SUB-CROSSBAR

SQUARE SUB-CROSSBAR is the problem of finding a maximum defect-free square sub-crossbar within the original nano-crossbar with disconnected wire defects. SQUARE SUB-CROSSBAR can be modeled as the balanced complete bipartite subgraph problem, which is to find a complete bipartite graph $K_{k,k}$ contained in G_S.

I-C. OUR RESULTS

Although it is well known that both the subgraph isomorphism problem and the balanced complete bipartite subgraph problem are NP-hard for bipartite graphs [2], [3], the complexity of LOGIC MAPPING and SQUARE SUB-CROSSBAR is not clear since the graphs representing surviving sub-crossbars are a special kind of bipartite graphs.

A bipartite graph G with a bipartition (U, V) is called an orthogonal ray graph if there exist a family of non-intersecting rays (half-lines) $R_u, u \in U$, parallel to the x-axis in the xy-plane, and a family of non-intersecting rays $R_v, v \in V$, parallel to the y-axis such that for any $u \in U$ and $v \in V$, $(u, v) \in E(G)$ if and only if R_u and R_v intersect.

Nano-wires such as m and n of a defective nano-crossbar shown in Figure 2 cannot be controlled as they do not touch the
boundary of the originally intended nano-crossbar. Since we cannot use such nano-wires, a graph representing a surviving sub-crossbar must be an orthogonal ray graph. The orthogonal ray graph was introduced by Shrestha, Kobayashi, Tayu, and Ueno [5] as a graph model for a surviving sub-crossbar.

We show in Section III that LOGIC MAPPING is NP-hard by showing that the subgraph isomorphism problem is NP-hard even for orthogonal ray graphs. We also show in Section IV that SQUARE SUB-CROSSBAR can be solved in polynomial time provided that the vertices of the orthogonal ray graph representing a surviving sub-crossbar are ordered so as to reflect the position of nano-wires relative to each other, which is a quite natural condition.

II. ORTHOGONAL RAY GRAPHS

Let \(G \) be an orthogonal ray graph with a bipartition \((U, V)\). \(G \) is called a two-directional orthogonal ray graph if \(R_u = \{ (x, b_v) \mid x \geq a_u \} \) for each \(u \in U \), and \(R_v = \{ (a_v, y) \mid y \geq b_v \} \) for each \(v \in V \), where \(a_w \) and \(b_w \) are real numbers for any \(w \in U \cup V \). The 3-claw is a tree obtained from a complete bipartite graph \(K_{1,3} \) by replacing each edge with a path of length 3. (See Figure 3(a).)

Although the following characterization of two-directional orthogonal ray trees was shown in [5], we show complete proofs to make the paper self-contained.

Lemma 1: The 3-claw is not a 2-directional orthogonal ray graph.

Proof: Assume to the contrary that the 3-claw is a 2-directional orthogonal ray graph. Let the vertices of the 3-claw be named as in Figure 3(a). We shall refer to the endpoint of the ray corresponding to a vertex \(v \) as \((a_v, b_v)\). Without loss of generality, suppose \(R_{u1} \) is a horizontal ray and that \(R_{u1}, R_{v2}, R_{v3} \) intersect with \(R_{u1} \) such that \(R_{v2} \) lies to the right of \(R_{u1} \), and to the left of \(R_{v3} \) as shown in Figure 3(b). It is easy to observe that \(b_{v2} > b_{v3} \) or else it is not possible to define \(R_{u2}, R_{u3}, \) and \(R_{u4} \). Since \(R_{u3} \) has to be defined such that \(a_{u3} > a_{v1} \) and \(b_{u3} < b_{v1} \), it is not possible to define \(R_{u3} \) such that it intersects with \(R_{u3} \) but not with \(R_{u1} \), a contradiction.

A path \(P \) in a tree \(T \) is called a spine of \(T \) if every vertex of \(T \) is within distance two from at least one vertex of \(P \).

Theorem 1: A tree \(T \) has a spine if and only if \(T \) does not contain 3-claw as a subtree.

Proof: The necessity is obvious. To prove the sufficiency, assume \(T \) does not contain a 3-claw. Let \(P \) be a longest path in \(T \). We claim that \(P \) is a spine. Assume it is not. Let \(V(P) = \{ v_1, v_2, \ldots, v_p \} \), and \((v_i, v_{i+1}) \in E(P) \), \(1 \leq i \leq p - 1 \). Let \(F \) be a forest obtained from \(T \) by deleting the edges in \(E(P) \). Let \(T_i \) be a tree in \(F \) containing \(v_i, 1 \leq i \leq p \). Since \(P \) is a longest path in \(T \), \(T_i \) consists of only one vertex, \(v_1 \), and \(T_{p-1} \) consists of only one vertex, \(v_p \). Also all vertices in \(T_2 \) and \(T_{p-1} \) are within distance one from \(v_2 \) and \(v_{p-1} \), respectively; and all vertices in \(T_3 \) and \(T_{p-2} \) are within distance two from \(v_3 \) and \(v_{p-2} \), respectively. Since we assumed that \(P \) is not a spine, there exists an integer \(j \) (\(4 \leq j \leq p - 3 \)) such that \(T_j \) contains a vertex \(w_j \) whose distance from \(v_j \) is three. Let \(P' \) be the path from \(v_j \) to \(w_j \). Then the subgraph of \(T \) induced by the vertices in \(\{ v_i \mid j - 3 \leq i \leq j + 3 \} \cup V(P') \) is a 3-claw. This contradicts the assumption that \(T \) does not contain 3-claw as a subtree, and therefore \(P \) is a spine.

Theorem 2: A tree \(T \) is a 2-directional orthogonal ray tree if and only if \(T \) does not contain 3-claw as a subtree.

Proof: The necessity follows from Lemma 1. We will show the sufficiency. Assume \(T \) does not contain 3-claw as a subtree. Then from Theorem 1, \(T \) contains a spine \(P \). Let \(V(P) = \{ v_1, v_2, \ldots, v_p \} \), and \((v_i, v_{i+1}) \in E(P) \), \(1 \leq i \leq p - 1 \). Corresponding to each vertex \(v_i \) in \(P \), define ray \(R_{v_i} = \{ (i, y) \mid y \geq i - 1 \} \) if \(i \) is odd, and define ray \(R_{v_i} = \{ (i, x) \mid x \geq i - 1 \} \) if \(i \) is even. Let \(F \) be a forest obtained from \(T \) by deleting the edges in \(E(P) \). Let \(T_i \) be a tree in \(T \) containing \(v_i, 1 \leq i \leq p \). Consider \(T_i \) to be rooted at \(v_i \). Let \(w_{i1}, w_{i2}, \ldots, w_{iq(i)} \) be the children of \(v_i \) in \(T_i \), where \(q(i) \) is the number of children of \(v_i \) in \(T_i \). Let \(z_{ij}, z_{j}, z_{ij+1}, \ldots, z_{ij+r(i)} \) be the children of \(w_{ij} \) in \(T_i \), where \(r(i) \) is the number of children of \(w_{ij} \) in \(T_i \). The rays corresponding to \(w_{ij} \) and \(z_{jk} \), \(1 \leq i \leq p, 1 \leq j \leq q(i), 1 \leq k \leq r(i) \), can be added as shown in Figure 4. Thus \(T \) is a 2-directional orthogonal ray graph.

III. INTRACTABILITY OF LOGIC MAPPING

We show in this section the following.

Theorem 3: LOGIC MAPPING is NP-hard.
Theorem 3 follows from Theorem 4 below. A decision problem associated with the subgraph isomorphism problem is stated as follows.

SUBGRAPH ISOMORPHISM

INSTANCE: Graphs H and G.

QUESTION: Does G contain a subgraph isomorphic to H, that is, does there exist a one-to-one mapping $\phi : V(H) \to V(G)$ such that if $(u, v) \in E(H)$ then $(\phi(u), \phi(v)) \in E(G)$?

Theorem 4: SUBGRAPH ISOMORPHISM is NP-complete even if G is a 2-directional orthogonal ray tree and H is a forest.

Proof: It is easy to see that the problem is in NP. We show a polynomial time reduction from 3-PARTITION, which has been shown to be strongly NP-complete in [2]. 3-PARTITION is defined as follows.

3-PARTITION

INSTANCE: A finite set A of $3m$ elements, a bound $B \in \mathbb{Z}^+$, and a size $s(a) \in \mathbb{Z}^+$ for each $a \in A$, such that each $s(a)$ satisfies $B/4 < s(a) < B/2$ and such that $\sum_{a \in A} s(a) = mB$.

QUESTION: Does A have a 3-partition, that is, can A be partitioned into m disjoint sets S_1, S_2, \ldots, S_m such that, for $1 \leq i \leq m$, $\sum_{a \in S_i} s(a) = B$?

Let $A = \{a_1, a_2, \ldots, a_{3m}\}$, $B \in \mathbb{Z}^+$, and $s(a_1), s(a_2), \ldots, s(a_{3m}) \in \mathbb{Z}^+$ be an instance of 3-PARTITION in which $\max_{a \in A} \{s(a)\}$ is bounded by a polynomial of the size of the instance. We shall construct a 2-directional orthogonal ray tree G and a forest H as follows.

Let C_1, C_2, \ldots, C_m be B-vertex chains such that for each i ($1 \leq i \leq m$), $V(C_i) = \{v_{i,j} \mid 1 \leq j \leq B\}$ and $E(C_i) = \{(v_{i,j}, v_{i,(j+1)}) \mid 1 \leq j \leq B - 1\}$. Let $T_1, T_2, \ldots, T_{m-1}$ be complete binary trees of height two rooted at vertices $r_1, r_2, \ldots, r_{m-1}$, respectively. Let G be the graph defined as

$$V(G) = \left(\bigcup_{i=1}^{m} V(C_i)\right) \cup \left(\bigcup_{i=1}^{m-1} V(T_i)\right),$$

$$E(G) = \left(\bigcup_{i=1}^{m} E(C_i)\right) \cup \left(\bigcup_{i=1}^{m-1} E(T_i)\right) \cup \{(r_i, v_{i,B}), (r_i, v_{(i+1),1}) \mid 1 \leq i \leq m - 1\}.$$

(See Figure 5(a).) Since the path in G from $v_{1,1}$ to $v_{m,B}$ is a spine of G, it follows from Theorems 1 and 2 that G is a two-directional orthogonal ray tree. Let H be a forest consisting of $m - 1$ complete binary trees of height two $T'_1, T'_2, \ldots, T'_{m-1}$, and $3m$ chains P_1, P_2, \ldots, P_{3m}, each P_j corresponding to element a_j of A and having $s(a_j)$ vertices. (See Figure 5(b).) G and H can be constructed in time polynomial in m and B.

We next prove that A has a 3-partition if and only if G contains a subgraph isomorphic to H.

Suppose first that A can be partitioned into m disjoint subsets S_1, S_2, \ldots, S_m such that for each i ($1 \leq i \leq m$), $\sum_{a \in S_i} s(a) = B$. An isomorphism from H to a subgraph of G can be obtained as follows. Since each chain C_i contains B vertices, we can map the chains of H corresponding to the elements of S_i to the chain C_i in G. Each T'_i in H can be mapped to T_i in G. It is easy to see that this is indeed an isomorphism from H to a subgraph of G.

Next suppose that H is isomorphic to a subgraph of G. Each T'_i ($1 \leq i \leq m - 1$) in H contains two vertices which have degree three and are at a distance two from each other. For a pair of vertices in G, the same is true only if the two vertices are the children of vertex r_i in T_i for any i ($1 \leq i \leq m - 1$). Therefore, each T'_i in H must be mapped to some T_i in G. This means that chains P_1, P_2, \ldots, P_{3m} in H are mapped to chains C_1, C_2, \ldots, C_m in G. For $1 \leq i \leq m$, let S_i be the set of elements of A corresponding to the paths of H mapped to C_i. Since C_i has B vertices, $\sum_{a \in S_i} s(a) \leq B$.
for all i ($1 \leq i \leq m$). Moreover, since the instance of 3-PARTITION satisfies $\sum_{a \in A} s(a) = mB$, we can conclude that $\sum_{a \in S_i} s(a) = B$ for all i ($1 \leq i \leq m$). Therefore A has a 3-partition.

IV. TRACTABILITY OF SQUARE SUB-CROSSBAR

IV-A. Two-Directional Orthogonal Rays

If we restrict the instance of SQUARE SUB-CROSSBAR such that all horizontal rays are directed towards the right and all vertical rays are directed upwards, we can solve the problem with a simple algorithm outlined in Figure 6, where we consider a decision problem associated with SQUARE SUB-CROSSBAR for simplicity. It is not difficult to see the following:

Theorem 5: Algorithm 1 solves a decision problem associated with SQUARE SUB-CROSSBAR in the instance restricted to rightward or upward rays in $O((|H| + |V|)^3)$ time.

IV-B. General Orthogonal Rays

We shall next extend Algorithm 1 to cover the case for general orthogonal rays.

Let R_X be a set of horizontal rays and R_Y be a set of vertical rays. Suppose two rays $R_x \in R_X$ and $R_y \in R_Y$ intersect at point P. Define $R^{xy}_Y \subseteq R_Y$ to be the set of rays that intersect with R_x and are to the left of P. Similarly define $R^{xy}_X \subseteq R_X$ to be the set of rays that intersect with R_y and are below P. Let (x_L, y_L) be the point where the leftmost ray in R^{xy}_Y intersects R_x, and let (x_B, y_B) be the point where the bottommost ray in R^{xy}_X intersects R_y. For each ray $R \in R^{xy}_Y$ with endpoint (x_R, y_R), define ray V_R as follows: $V_R = R$ if R is an upward ray, and V_R is an upward ray with endpoint (x_R, y_B) if R is a downward ray. And for each ray $R \in R^{xy}_X$ with endpoint (x_B, y_R), define ray H_R as follows: $H_R = R$ if R is a rightward ray, and H_R is a rightward ray with endpoint (x_L, y_R) if R is a leftward ray. Finally, define $V^{xy} = \{V_R \mid R \in R^{xy}_X\}$, and define $H^{xy} = \{H_R \mid R \in R^{xy}_X\}$.

The following observation is obvious from the definitions above.

Observation 1: Two rays in $V^{xy} \cup H^{xy}$ intersect if and only if their corresponding rays in $R^{xy}_Y \cup R^{xy}_X$ intersect.

Input: A set H of rightward rays, a set V of upward rays, and an integer k.

Output: YES if $H \cup V$ contains a $k \times k$ sub-crossbar, NO, otherwise.

Step 1: If H or V is empty, output NO and halt. Else, set B to be the bottommost ray in H and set L to be the leftmost ray in V.

Step 2: Set n_B to be the number of rays in V that intersect with B, and set n_L to be the number of rays in H that intersect with L.

Step 3: If $n_B \geq k$ and $n_L \geq k$, output YES.

Step 4: If $n_B < k$, set $H = H - \{B\}$.

Step 5: If $n_L < k$, set $V = V - \{L\}$.

Step 6: Return to Step 1.

Fig. 6. Algorithm 1.

Fig. 7. Algorithm 2.

Observation 2: $R_X \cup R_Y$ contains a $k \times k$ surviving sub-crossbar if and only if there exists a pair of intersecting rays $R_x \in R_X$ and $R_y \in R_Y$ such that $H^{xy} \cup V^{xy}$ contains a $(k - 1) \times (k - 1)$ surviving sub-crossbar.

Proof: The sufficiency is immediate from Observation 1. To see the necessity, set R_x and R_y to be the topmost and rightmost rays, respectively of a $k \times k$ sub-crossbar. Figure 7 shows Algorithm 2 which uses Algorithm 1 as a subroutine.

Algorithm 2 exhaustively checks all pairs of intersecting rays to determine if there exists a pair $R_x \in R_X$ and $R_y \in R_Y$ such that $H^{xy} \cup V^{xy}$ contains a $(k - 1) \times (k - 1)$ surviving sub-crossbar. Therefore, from Observation 2 and Theorem 5, we obtain the following.

Theorem 6: Algorithm 2 solves a decision problem associated with SQUARE SUB-CROSSBAR in $O((|R_X| + |R_Y|)^4)$ time.

V. CONCLUDING REMARKS

It should be noted that Algorithm 2 can be easily modified for the search version and the original optimization version of SQUARE-CROSSBAR. It should also be noted that Algorithm 2 can be used to decide the presence of a $k \times k$ sub-crossbar even if the input sets R_X and R_Y contain line segments instead of rays. Moreover, Algorithm 2 can be easily modified to decide the presence of an $m \times n$ sub-crossbar for any positive integers m and n. It is an interesting open question to reduce the complexity of Algorithms 1 and 2.

REFERENCES